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DYNAMIC ADSORPTION IN A RADIAL FLOW

OF A SOLUTION AROUND A SPHERICAL CAVITY

UDC 532.529.6:532.787S. V. Amel’kin and V. L. Mokan

The paper studies the local variation of the concentration of a neutral dilute solution during its
radial flow around a spherical cavity in the approximations of an adsorption layer and the Langmuir
adsorption kinetics. The authors used the boundary-layer method and the method of asymptotic
series expansion of the solution in a small parameter, which is the ratio of the time of establishing
an adsorption equilibrium to the time of establishing a steady diffusion layer around the cavity. The
equations obtained for a zeroth approximation were studied analytically and numerically. In the
case of high-frequency oscillations of the cavity in the solution, a solution of the problem was found
that corresponds to the process of “straightened” adsorption or “pumping” an admixture into the
adsorption layer.

Introduction. It was found experimentally that in some cases the passage of shock waves or the effect
of an intense ultrasonic field lead to a considerable decrease in the induction period of solid-phase extraction in
oversaturated solutions [1, 2]. This effect is intensified by exciting cavitation in the solution: a large number of
bubble–microcrystal pairs is formed [3]. This process has been studied in a number of theoretical papers (see, for
example, a review in [3]).

In the present paper, local variation of solution saturation in a radial flow around a spherical cavity simulat-
ing a gas bubble is considered as a possible mechanism of decreasing the induction period of solid-phase extraction in
oversaturated solutions. The local variation of saturation is due to the disturbance of the adsorption equilibrium of
the dissolved admixture in a thin layer on the “solution–cavity” surface in the radial flow around the spherical cav-
ity. Adsorption implies an increase (positive adsorption) or decrease (negative adsorption) in dissolved-component
concentration on the interface due to the long-range electromagnetic interaction of admixture molecules with the
solvent, which is not compensated for by the cavity. The choice of the cavity as the object of our study is moti-
vated by the necessity of eliminating the effect of thermal processes occurring during expansion, compression, or
oscillations of a gas bubble in a liquid.

Nonequilibrium or dynamic adsorption of a gas bubble on the surface has been studied previously in the
solution of the classical problem of the effect of surface–active substances (SAS) on gas-bubble motion in the
liquid [4, 5]. Recently, several papers have been published on the dynamic adsorption of SAS during growth of a gas
bubble in the context of kinetic studies of the formation of volume foam structures (see, for example, [6]). However,
in a general formulation (expansion, compression, and cavity pulsations), the problem of dynamic adsorption has
not been considered. The solution obtained in the present paper corresponds to the processes of “straightened”
adsorption or “pumping” of an admixture into an adsorption layer during high-frequency cavity oscillations in the
solution. This problem is of considerable interest for analysis of physicochemical processes in gas–liquid media.

Formulation of the Problem. We consider a spherical cavity of radius R0 in a dilute solution with a
dissolved neutral component S having volume concentration c0. The component S is adsorbed on the interface
between the solution and the cavity so that its concentration around the spherical cavity changes under the law
cS = c

(0)
S (r) (r > R0, where r is the modulus of the radius-vector of a spherical coordinate system whose origin
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coincides with the cavity center). As a rule, the characteristic thickness ∆ of the adsorption layer on which the
function c

(0)
S (r) decreases (or increases) rapidly to the value c0 is of the order of several nanometers [5]. For this

dimension, both macroscopic and hydrodynamic descriptions are possible.
At time t = 0, let the cavity radius begin to change by the law R = R(t). It is necessary to find the

distribution of the component S around the spherical cavity for the subsequent times. Let us consider the laminar
flow of an ideal incompressible solution around the spherical cavity. The effect of adsorption on the motion of the
cavity boundary due to variation of the surface-tension coefficient is neglected. Since the solution is dilute, the
weak heat effects of dissolution and adsorption are ignored. Thus, in the formulation of the problem, there are no
heat sources, and the temperature field is uniform. Together with the condition of the solution incompressibility,
this means that the nonequilibrium cross effects are absent (thermo- and barodiffusion).

Governing Equations and Their Relationships. In this formulation, the admixture distribution around
the spherical cavity is described by the diffusion equation in the potential field of the adsorption layer taking into
account convective transfer of the admixture by the radial flow of the solution. We use the well-known adsorption-
layer approximation [5, 6], which agrees well with the experimental data. For this, we distinguish the adsorption
layer R 6 r 6 R + ∆ of thickness ∆ � R in which the state of the admixture is determined by the average
concentration in the layer:

〈c〉 = ∆−1R−2

R+∆∫
R

cS(r)r2 dr.

A closed kinetic equation for 〈c〉 is derived from the initial equation of diffusion in the potential field of the adsorption
layer if we adopt the hypothesis on “fast mixing” of particles in the layer [smallness of derivatives of cS(r) higher than
the first order]. As a result, we obtain the Langmuir equation [5, 6] in which the kinetic parameters α (frequency
of particle transition from the external boundary into the layer) and β (frequency of particle transition from the
layer to the external boundary) are expressed in terms of layer thickness, the diffusion coefficient for admixture
molecules D, and the parameters of the potential fields of the adsorption layer. Since the parameters of the potential
field of the adsorption layer are insufficiently precise, we assume that α and β are phenomenological parameters.

Using the Langmuir exchange model, it is easy to obtain an equation for 〈c〉 from the balance relations for
the number of particles entering and leaving the adsorption layer. In these cases, the equations for cavity expansion
and compression have different forms because of the different effects of the flow of the solution on the admixture
average concentration in the adsorption layer. For cavity expansion, we have the equation (ignoring the saturation
of the adsorption layer)

d〈c〉
dt

= −
(
β + 2R−1 dR

dt

)
〈c〉+

(
α+ 2R−1 dR

dt

)
c∆, (1)

where c∆ is the admixture concentration at the external boundary of the layer. For cavity compression, we have
the ordinary Langmuir equation

d〈c〉
dt

= −β〈c〉+ αc∆. (2)

In the range of r > R+ ∆, the potential field of the adsorption layer does not act, and the equation for the
admixture concentration c (the subscript S is omitted) becomes

∂c

∂t
+
dR

dt

R2

r2

∂c

∂r
= D

(∂2c

∂r2
+

2
r

∂c

∂r

)
. (3)

The boundary condition for Eq. (3) at the external boundary of the adsorption layer results from the
condition of preservation of the total number of particles in the volume. Using Eqs. (1)–(3) and taking into account
a rapid decrease in molecular flux with increase in r, we obtain the following equations:
— for cavity expansion,

D∆−1 ∂c

∂r

∣∣∣
r=R+∆

= −β〈c〉+ αc∆;

— for cavity compression,

D∆−1 ∂c

∂r

∣∣∣
r=R+∆

= −
(
β − 2R−1 dR

dt

)
〈c〉+

(
α− 2R−1 dR

dt

)
c∆.
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The initial conditions for Eqs. (1)–(3) have the form

〈c〉|t=0 = Ac0, c(0, r) = c0, A = αβ−1,

where A is the adsorption coefficient.
We convert to the desired dimensionless quantities x = 〈c〉/(Ac0) and y = c/c0 and the dimensionless

variables t1 = βt, η = r/R, and a = R/R0. We introduce the Fourier numbers Fo1 = D/(β∆2) and Fo2 = D/(βR2
0)

and the adsorption Peclet number Pea(t1) = 2a−1 da/dt1, which is the product of the diffusion Peclet number Ped
and Fo2. For cavity expansion (Pea > 0), we obtain the following system of equations for the relative admixture
concentration:

dx

dt1
= −(1 + Pea)x+ (1 +A−1Pea)y∆,

a2
[ ∂y
∂t1
− 1

2
Pea
(
η − 1

η2

)∂y
∂η

]
= Fo2

(∂2y

∂η2
+

2
η

∂y

∂η

)
, (4)

√
Fo1Fo2

∂y

∂η

∣∣∣
η=1+

√
Fo2/(

√
Fo1a)

= Aa(y∆ − x), x(0) = 1, y(0, η) = 1.

For cavity compression (Pea < 0), the kinetic equation for x and the boundary condition for y change as
follows:

dx

dt1
= y∆ − x,

√
Fo1Fo2

∂y

∂η

∣∣∣
η=1+

√
Fo2/(

√
Fo1a)

= Aa[−(1− Pea)x+ (1−A−1Pea)y∆].

Let us estimate the parameters of the problem included in system (4). For most substances, the value of
the adsorption coefficient (A > 1 for positive adsorption and A < 1 for negative adsorption) lies in the range
of A ≈ 0.5–2. Hence, the values of the coefficients in Eqs. (4) expressed in terms of the above coefficient are of the
order of unity. The Fourier number Fo1, which corresponds to the ratio of the characteristic time of departure of
an admixture molecule from the adsorption layer to the characteristic time of diffusion in this layer, is also of the
order of unity. The Fourier number Fo2, which corresponds to the ratio of the characteristic time of establishing
adsorption equilibrium to the characteristic time of establishing a steady diffusion flow around the cavity, is of the
order of ∆2/R2

0 and, hence, Fo2 � 1.
Boundary-Layer Approximation. Using the smallness of the parameter Fo2 at the highest derivative in

the diffusion equation, we introduce the variable ξ = (η − 1)/
√

Fo2. A reason for this introduction is that in the
intense fast processes studied, the major disturbance of adsorption equilibrium occurs in a thin diffusion layer.

We seek a solution of the problem for x and y in the form of the asymptotic series

x = x(0) +
√

Fo2 x
(1) + . . . , y = y(0) +

√
Fo2 y

(1) + . . . .

Then, for the zeroth approximation subject to the condition Pea �
√

Fo2, we have the following equations:
— for cavity expansion,

dx(0)

dt1
= −(1 + Pea)x(0) + (1 +A−1Pea)y(0)

∆ , a2
[∂y(0)

∂t1
− 3

2
Peaξ

∂y(0)

∂ξ

]
=
∂2y(0)

∂ξ2
,

(5)√
Fo1

∂y(0)

∂ξ

∣∣∣
ξ=1/(

√
Fo1a)

= Aa(y(0)
∆ − x(0)), x(0)(0) = 1, y(0)(0, ξ) = 1;

— for cavity compression (subject to the additional condition a�
√

Fo2),

dx(0)

dt1
= y

(0)
∆ − x(0),

(6)√
Fo1

∂y(0)

∂ξ

∣∣∣
ξ=1/(

√
Fo1a)

= Aa[−(1− Pea)x(0) + (1−A−1Pea)y(0)
∆ ].
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Fig. 1. Curves of x(0)(Pea) (1 and 3) and y
(0)
∆ (Pea) (2 and 4) for the self-similar

solution for negative adsorption (curves 1 and 2) for A = 0.5 and Fo1 = 0.25 and
positive adsorption (curves 3 and 4) for A = 2 and Fo1 = 1.

Converting in Eqs. (5) and (6) to the Plesset–Zwick variables known for the problem of the dynamics of
vapor bubble growth [7], we have

τ =

t1∫
0

a4(s) ds, z = a3ξ;

for cavity expansion, we obtain

dx(0)

dτ
= −(a−4 + Pea)x(0) + (a−4 +A−1Pea)y(0)

∆ ; (7)

∂y(0)

∂τ
=
∂2y(0)

∂z2
, (8)

a2
√

Fo1
∂y(0)

∂z

∣∣∣
z=a2/

√
Fo1

= A(y(0)
∆ − x(0)), x(0)(0) = 1, y(0)(0, z) = 1, (9)

and for compression,

dx(0)

dτ
= a−4(y(0)

∆ − x(0)),
(10)

a2
√

Fo1
∂y(0)

∂z

∣∣∣
z=a2/

√
Fo1

= A[−(1− a4Pea)x(0) + (1−A−1a4Pea)y(0)
∆ ].

Self-Similar Solution. For exponential expansion of the cavity (for example, at the leading edge of the
shock wave), under the law a(t1) = exp (Peat1/2) [hence, a(τ) = (1 + 2Peaτ)1/4, where Pea > 0 is constant], the
problem has a self-similar solution in the form y(0)(z, τ) = ϕ(z/a2), y(0)

∆ , x(0) = const(τ) for t1 > Pe−1
a . Representing

the solution in the above form, from Eqs. (7) and (8) and boundary condition (9), we find

x(0) =
2A−1

√
Fo1(A+ Pea)

√
2πPea(A− 1) erfc (

√
Pea/(2Fo1)) exp (Pea/(2Fo1)) + 2

√
Fo1(1 + Pea)

,

y
(0)
∆ =

2
√

Fo1(1 + Pea)
√

2πPea(A− 1) erfc (
√

Pea/(2Fo1)) exp (Pea/(2Fo1)) + 2
√

Fo1(1 + Pea)
,

where erfc(w) is the additional probability integral.
Figure 1 shows curves of x(0)(Pea) and y(0)

∆ (Pea). Of interest is the behavior of the quantity y(0)
∆ because in

the case of cavity expansion, the average admixture concentration in the adsorption layer cannot be either higher
(for A < 1) or lower (for A > 1) than the equilibrium concentration in the bulk; the quantity x(0) is limited by
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the value of A−1. As follows from the analytical dependence and the data in Fig. 1, for negative adsorption, y(0)
∆

first increases as 1 + (1− A)
√
πPea/(2Fo1) with increase in Pea, and, for Pea > 0.25, it gradually decreases to its

equilibrium value y(0)
∆ = 1. For positive adsorption, y(0)

∆ first decreases as 1− (A− 1)
√
πPea/(2Fo1) with increase

in Pea, and for Pea > 0.25, it gradually increases to its equilibrium value y(0)
∆ = 1. Such behavior of the solution

for Pea > 0.25 is due to the fact that the disturbance of the equilibrium in the adsorption layer is “saturated,” and
the flow has enough time to remove the admixture molecules from the thin diffusion layer to the adsorption layer.
Hence, the quantity y

(0)
∆ tends to the equilibrium value y(0)

∆ = 1. Thus, during cavity expansion, the variation of
solution saturation in the external diffusion layer is limited and reaches a maximum at a certain Peclet number
Pe∗a(Fo1, A). This is due to the various effects of the flow on the admixture in the adsorption and external diffusion
layers and to the existence of a maximum possible disturbance of the equilibrium in the adsorption layer.

Numerical Solution. For an arbitrary curve a(t1), the solution of the diffusion equation (8) with boundary
and initial condition (9) can be written in terms of the simple-layer potential:

y(0)(τ, z) = 1 +
1

4
√
π

τ∫
0

ν(λ)√
τ − λ

exp
(
− (z − a2(λ))2

4(τ − λ)

)
dλ.

Then, following a standard procedure [8], we obtain the following integral equation for the function ν(τ):

ν(τ) =
4A(x(0) − 1)
a2
√

Fo1

−
τ∫

0

(a2(τ)−a2(λ))ν(λ)G(τ, λ) dλ− 2A
a2

τ∫
0

(τ−λ)ν(λ)G(τ, λ) dλ,
(11)

G(τ, λ) =
1

2
√
πFo1(τ − λ)3

exp
(
− (a2(τ)− a2(λ))2

4Fo1(τ − λ)

)
,

which determines the solution of the problem together with the kinetic equation (7). A similar integral equation
can be written for cavity compression (in this paper, this equation is omitted).

Equations (7), (10), and (11) were solved numerically for various dependences a(t1). Equations (7) and
(10) were solved by the fourth-order Runge–Kutta method, and the integral equation (11) was solved by successive
cyclic integration using the open-type Newton–Cotes formula for numerical integration. The numerical scheme was
tested on the self-similar solution for exponential cavity expansion in the solution and showed good agreement of
numerical and analytical solutions with an error typical of errors for the Runge–Kutta method and the open-type
Newton–Cotes formulas.

The case of expansion was studied for the time dependence of the cavity radius in the form a(t1) = (1+vt1)γ ;
hence, a(τ) = [1 + (4γ + 1)vτ ]γ/(4γ+1). The time dependence of the Peclet number has the form Pea = 2vγ
× (1 + vt1)−1. It is established that for negative adsorption, y(0)

∆ increases to a maximum value y(0)
∆ max, and, then,

decreases to the equilibrium value y(0)
∆ = 1. Positive adsorption is characterized by a minimum value y(0)

∆ min. In
the range of Pea(0) < 1, we have y

(0)
∆ max ∼ 1 + (1 − A)

√
Pea(0)/Fo1 = 1 + (1 − A)

√
2vγ/Fo1 and y

(0)
∆ min ∼

1 − (A − 1)
√

Pea(0)/Fo1 = 1 − (A − 1)
√

2vγ/Fo1. The behavior of the quantity y
(0)
∆ corresponds to the time

variation of the Peclet number Pea(t1), which decreases asymptotically as t−1
1 , leading obviously to the recovery

of adsorption equilibrium. Figure 2 gives results of numerical calculation in the case of linear increase in cavity
radius (γ = 1).

The case of compression was considered for variation of the cavity radius by the Rayleigh law
Pea(t1) = −1.83(aβT )−1

√
2(a−3 − 1)/3 (T is the time of filling the cavity) [9]. Figure 3 gives calculation re-

sults. It is obvious that in the case of cavity compression, the behavior of the quantities x(0) and y(0)
∆ is opposite to

that in the case of expansion: slow variation in the initial stage and then rapid growth (for positive adsorption) or
abrupt decrease (for negative adsorption). Since for cavity compression under the Rayleigh law, the absolute value
of the Peclet number |Pea(t1)| increases constantly (from zero at the initial time to infinity during cavity collapse),
we analyze the behavior of the quantities x(0) and y

(0)
∆ which variation in Pea.

If the diffusion flow component at the external boundary of the adsorption layer is assumed to be of the
order of unity, the convective component is of the order of the Peclet number Pea. For |Pea| � 1, the convective
component is small and the diffusion flow of admixture molecules from the external boundary of the adsorption
layer sustains the quasiequilibrium state. With increase in Peclet number to |Pea| ∼ 1, the convective and diffusion
flux components at the external boundary take values of the same order: the diffusion flow of admixture molecules
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Fig. 2 Fig. 3

Fig. 2. Curves of x(0)(t1) and y
(0)
∆ (t1) for linear cavity expansion (γ = 1 and v = 0.1)

(notation the same as in Fig. 1).

Fig. 3. Curves of x(0)(t1) and y
(0)
∆ (t1) for cavity compression under the Rayleigh

law (βT = 15) (notation the same as in Fig. 1).

from the external boundary is compensated for by the convective flow of these molecules from the adsorption layer.
In this range of Peclet numbers, a quasisteady slowly increasing or decreasing solution for x(0) and y(0)

∆ is established.
Equating the diffusion and convective flow components in the vicinity of the external boundary of the adsorption
layer and taking the boundary condition into account, we find that x(0) ∼ y

(0)
∆ ∼ A. For large absolute values of

the Peclet number (|Pea| � 1), in the case of compression, we can neglect the diffusion flow component in Eq. (5)
∂2y(0)/∂ξ2 and convert to a system of kinetic equations for x(0) and y

(0)
∆ .

We consider the equations for an exponential law of decrease in cavity radius a(t1) = exp (Peat1/2), which
holds when a shock wave approaches the cavity. By virtue of the constancy of Pea < 0, the analysis is simplified,
and the results obtained are valid for any |Pea(t1)| � 1. From Eqs. (5) and (6) and the corresponding boundary
condition, we have

dx(0)

dt1
= y

(0)
∆ − x(0),

dy
(0)
∆

dt1
=

3Pe2
a

2Fo1
(Ax(0) − y(0)

∆ ). (12)

The characteristic indices of Eqs. (12) have the form

µ± = −(G+ 1)/2± ((G+ 1)2/4 +G(A− 1))1/2 [G = 3Pe2
a/(2Fo1)].

The positive characteristic index is µ+ ≈ A− 1 (with accuracy up to G−1). Hence, for large absolute values
of the Peclet number (|Pea| � 1), the adsorption kinetics is determined only by the adsorption coefficient, and the
relative admixture concentration both in the adsorption layer and on its external boundary increases (A > 1) or
decreases (A < 1) exponentially: x(0), y(0)

∆ ∼ exp ((A−1)t1) = exp ((α−β)t). We note that for |Pea| � 1, the effect
of the solution flow on admixture distribution in the adsorption layer should be taken into account, and, hence, the
exact problem of admixture diffusion in the potential field of the adsorption layer must be solved.

An essential difference in the adsorption kinetics during cavity expansion and compression leads to the
problem of dynamic adsorption in the case of alternating compression and expansion, in particular, cavity pulsations
(for example, after passage of a shock wave or in an ultrasonic field). Figure 4 gives calculation results for the problem
in which weakly nonlinear pulsations are simulated by time variation of cavity radius τ in the form a(τ) = 1+f sin vτ
(f < 1) and Pea ∼ 2fv cos vτ [a corresponding curve of a(t1) is shown in Fig. 4a]. For positive adsorption (Fig. 4b),
the relative admixture concentration averaged over the period grows both in the adsorption layer 〈x(0)〉T and on
its external boundary 〈y(0)

∆ 〉T (“pumping” of the admixture). For negative adsorption, an opposite dependence is
observed (Fig. 4c). In Fig. 4b and c, the curves of x(0)(t1) and y

(0)
∆ (t1) virtually coincide. With time, the relative

admixture concentration averaged over the period decreases or increases more slowly and then attains saturation.
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Fig. 4. Results of numerical solution of the problem of dynamic adsorption with the law
a(τ) = 1 + f sin vτ simulating weak nonlinear pulsations for v = 0.1 and f = 0.2: (a) a(t1);

(b) x(0)(t1) and y
(0)
∆ (t1) for positive adsorption (A = 2 and Fo1 = 1); (c) x(0)(t1) and y

(0)
∆ (t1)

for negative adsorption (A = 0.5 and Fo1 = 0.25).

An increase in the amplitude of the Peclet number Pea leads to higher velocities of “pumping” and larger values
of 〈x(0)〉T and 〈y(0)

∆ 〉T in the saturation limit.
The solution of the problem obtained for cavity pulsations describes the process of “straightened” adsorption

by analogy to the well-known processes of “straightened” heat transfer for oscillating vapor bubbles and “straight-
ened” diffusion for vapor bubbles oscillating in a liquid [10].

Discussion of Results. Local variation of the saturation of a dilute solution is established for radial flow
of a liquid around a spherical cavity. For cavity expansion, the variation of saturation is limited and reaches a
maximum at a certain Peclet number Pe∗a. For cavity compression, the variation of saturation is limited only by
the time of filling the cavity and can reach large values at |Pea| � 1. For cavity pulsations, a limited increase (for
positive adsorption) or decrease (for negative adsorption) in the admixture concentration averaged over the period
is observed in the adsorption layer and on its external boundary (the process of “straightened” adsorption).

The velocity of the cavity wall u necessary for substantial disturbance of adsorption equilibrium is estimated
from the condition Pea �

√
Fo2, which satisfies the condition u � u∗ =

√
βD. For characteristic values of the

parameters β ≈ 107 sec−1 and D ≈ 10−9 m2/sec, we have u∗ = 0.1 m/sec. The cavity-wall velocity upon passage
of the shock wave is u ∼

√
p0/ρ (p0 is the pressure amplitude in the liquid and ρ is the liquid density), and

u = 10–100 m/sec for p0 = 0.1–10 MPa, respectively (ρ = 103 kg/m3). For a cavity of radius R ≈ 10 µm,
these cavity-wall velocities correspond to the adsorption Peclet number Pea ∼ 1. For a cavity of radius R0,
pulsating with frequency ω and amplitude δR, the necessary condition has the form δRω ∼

√
p0/ρ δR/R0 � u∗,

where p0 corresponds, for example, to the pressure amplitude in an acoustic field. Hence, the relative pulsation
amplitude δR/R0 should not be too small. This is the case for resonance excitation of small gas bubbles (R0 ≈
10–100 µm) oscillating at a frequency ω ≈ 105–106 Hz, which corresponds to ultrasonic frequency. Thus, the
physical conditions necessary for the occurrence of the processes considered are achieved by passage of a shock
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wave through a solution containing small gas bubbles or by the action of an intense ultrasonic field, in particular,
excitation in of cavitation in the solution.

The local variation of saturation for radial flow of a solution around a cavity established in the present paper
can significantly affect the kinetics of some physicochemical processes in gas–liquid media. Upon expansion or
compression of cavities, these can be fast chemical reactions (t ≈ 10−6–10−5 sec) with the participation of radicals.
For cavity pulsations (at the end of a sufficiently strong shock wave or in an intense ultrasonic field), the variation
of solution saturation can affect physicochemical processes occurring for characteristic times t ≈ 10−3–10−1 sec. In
particular, a local increase in the oversaturation of the solution around a cavity leads to a significant decrease in the
induction period of solid-phase extraction due to rapid (exponential) growth in nucleation frequency with increase
in the degree of oversaturation.

This work was supported by the Foundation for Leading Scientific Schools of the Russian Federation (Grant
No. 00-15-96157).
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